Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 15(1): 102283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029454

RESUMO

Babesia vesperuginis is an intraerythrocytic protozoan parasite that circulates among bats and ticks in many countries worldwide. However, the distribution of B. vesperuginis in the Baltic region has not been studied. A total of 86 dead bats from eight different species were collected and screened for Babesia spp. using real-time PCR. Overall, 52.3% (45/86) of the bats were found positive for Babesia spp. The prevalence of Babesia spp. in different organs varied, with the highest prevalence observed in heart tissues (37.0%) and the lowest in liver tissues (22.2%). However, the observed differences in prevalence among organs were not statistically significant. Blood samples from 125 bats of nine different species were also analyzed for Babesia spp. prevalence using real-time PCR and nested PCR. The results showed a prevalence of 35.2% and 22.4%, respectively. Moreover, 28.3% (17/60) of the examined blood samples were confirmed positive for Babesia spp. through blood smear analysis. The total of 32 partial sequences of the 18S rRNA gene derived in this study were 100% identical to B. vesperuginis sequences from GenBank. In eight species of bats, Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Vespertilio murinus, Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii and Nyctalus noctula, Babesia parasites were identified. In E. nilssonii, Babesia spp. was identified for the first time.


Assuntos
Babesia , Babesiose , Quirópteros , Animais , Babesia/genética , Quirópteros/parasitologia , Lituânia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Babesiose/epidemiologia , Babesiose/parasitologia
2.
Int J Parasitol Parasites Wildl ; 22: 60-68, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37692054

RESUMO

Leucocytozoon parasites (Haemosporida, Leucocytozoidae) are haemosporidians whose diversity, exo-erythrocytic development and potential vectors are the least studied. The knowledge about their exo-erythrocytic development and pathogenicity is fragmentary, resulting in an incomplete comprehension of the impact of these parasites on avian hosts. For a long time, Leucocytozoon infections were considered benign to wild birds, even though they were virulent in poultry and responsible for some wild bird population declines. This study aimed to investigate the presence of Leucocytozoon species exo-erythrocytic stages in song thrushes Turdus philomelos using conventional histological techniques (sections stained by H&E) and chromogenic in situ hybridization (CISH). Tissues from ten birds (seven naturally infected and three opportunistic samplings) were examined using both methods. Parasite lineages were identified from blood samples using PCR-based techniques. Leucocytozoon species meronts were found in five individuals (in four birds using H&E staining protocol, and in three in CISH-treated histological sections). Meronts were found mainly in the kidneys, but some meronts were also present in the lungs. It was possible to observe different maturation stages of meronts in the same bird individual, indicating an asynchronous development. Cytomeres were readily visible in developing meronts. One megalomeront-like structure was present close to a blood vessel in the heart. It was covered with a prominent capsular-like wall. No inflammatory reaction or necrosis was seen in the tissues surrounding the meronts or the megalomeront-like structure. We could confirm the transmission of three Leucocytozoon lineages (lTUPHI14, lSTUR1 and lTUPHI13) in Europe, and add evidence of the transmission of two Plasmodium lineages, including Plasmodium circumflexum (pTURDUS1), and Haemoproteus asymmetricus (hTUPHI01). We call for further research to better understand Leucocytozoon parasite exo-erythrocytic development.

3.
Int J Parasitol ; 53(10): 531-543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263375

RESUMO

Avian haemosporidians are widespread parasites categorized into four families of the order Haemosporida (Apicomplexa). Species of the subgenus Parahaemoproteus (genus Haemoproteus) belong to the Haemoproteidae and are transmitted by Culicoides biting midges. Reports of death due to tissue damage during haemoproteosis in non-adapted birds have raised concerns about these pathogens, especially as their exo-erythrocytic development is known for only a few Haemoproteus spp. More research is needed to better understand the patterns of the parasites' development in tissues and their impact on avian hosts. Yellowhammers Emberiza citrinella (Emberizidae) and common house martins Delichon urbicum (Hirundinidae) were screened for Haemoproteus parasites by microscopic examination of blood films and PCR-based testing. Individuals with single infection were selected for histological investigations. H & E-stained sections were screened for detection and characterization of the exo-erythrocytic stages, while chromogenic in situ hybridization (CISH) and phylogenetic analysis were performed to confirm the Haemoproteus origin and their phylogenetic relationships. Haemoproteus dumbbellus n. sp. was discovered in Emberiza citrinella single-infected with the lineage hEMCIR01. Meronts of H. dumbbellus n. sp. developed in various organs of five of six tested individuals, a pattern which was reported in other Haemoproteus species clustering in the same clade, suggesting this could be a phylogenetic trait. By contrast, in Delichon urbicum infected with the Haemoproteus lineage hDELURB2, which was linked to the more distantly related parasite Haemoproteus hirundinis, only megalomeronts were found in the pectoral muscles of two of six infected individuals. All exo-erythrocytic stages were confirmed to be Haemoproteus parasites by CISH using a Haemoproteus genus-specific probe. While the development of meronts seems to be typical for species of the clade containing H. dumbbellus, further investigations and data from more species are needed to explore whether a phylogenetic pattern occurs in meront or megalomeront formation.


Assuntos
Doenças das Aves , Ceratopogonidae , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Humanos , Animais , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Passeriformes/parasitologia , Ceratopogonidae/parasitologia , Citocromos b/genética
4.
Parasitol Res ; 115(7): 2625-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27000087

RESUMO

Malaria parasite Plasmodium (Novyella) delichoni n. sp. (Haemosporida, Plasmodiidae) was found in a widespread Eurasian songbird, the common house martin Delichon urbicum (Hirundinidae). It is described based on the morphology of its blood stages and segments of the mitochondrial cytochrome b and apicoplast genes, which can be used for molecular identification of this species. Erythrocytic meronts and gametocytes are strictly nucleophilic, and mature gametocytes possess pigment granules of markedly variable size, including large ones (1 µm in length). Due to these features, P. delichoni can be readily distinguished from all described species of avian malaria parasites belonging to subgenus Novyella. Additionally, mature erythrocytic merozoites contain a dense clump of chromatin, a rare character in avian malaria parasites. Erythrocytic merogony is asynchronous. Illustrations of blood stages of the new species are given, and phylogenetic analysis identifies DNA lineages closely related to this parasite. Domestic canary Serinus canaria and Eurasian siskin Carduelis spinus were infected after subinoculation of infected blood obtained from the house martin. Parasitemia was long lasting in both these hosts, but it was high (up to 70 %) in Eurasian siskins and low (up to 1 %) in canaries. Mortality was not observed, and histological examination and chromogenic in situ hybridisation did not reveal secondary exoerythrocytic meronts (phanerozoites) in the exposed birds. It is likely that persistence of this infection occurs due to long-lasting parasitemia in avian hosts. Sporogony was abortive in mosquitoes Culex pipiens pipiens form molestus, Culex quinquefasciatus and Aedes aegypti at gametogenesis or ookinete stages. The new species is absent from juvenile birds at breeding sites in Europe, indicating that transmission occurs at African wintering grounds.


Assuntos
Plasmodium/classificação , Aves Canoras/parasitologia , Aedes/parasitologia , Animais , Canários/parasitologia , Culex/parasitologia , Citocromos b/genética , Europa (Continente) , Malária Aviária/parasitologia , Passeriformes/parasitologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...